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The paper describes studies of the turbulence of the liquid in a bubbly, grid- 
generated turbulent flow field. Laser-Doppler and hot-film anemometry are used for 
the experimental investigation. It is found that the turbulent kinetic energy 
increases strongly with the void fraction a. Roughly speaking, there exist two 
distinct regimes: the first one corresponds to low value of a, where hydrodynamic 
interactions between bubbles are negligible, and the second one to  higher values, for 
which, owing to their mutual interactions, the bubbles transfer a greater amount of 
kinetic energy to  the liquid. The Reynolds stress tensor shows that the quasi- 
isotropy is not altered. At low enough values of a, the difference between the 
turbulent kinetic energy in the liquid phase and the energy associated with the grid- 
generated turbulence proves to be approximately equal to the intensity of the 
pseudo-turbulence, defined as the fluctuating energy that would be induced by the 
motion of the bubbles under non-turbulent conditions. The one-dimensional spectra 
exhibit a large range of high frequencies associated with the wakes of the bubbles and 
the classical -g  power law is progressively replaced by a -$ dependence. 

1. Introduction 
Most calculations performed in gas-liquid flows for engineering purposes concern 

mainly headlosses in pipe flows and only require an estimation of the stress at the 
wall, since they are based on an integral momentum balance. Under such conditions, 
the friction coefficient at the wall is indeed the only really significant parameter, 
accounting for all forms of momentum exchange. However, in order to acquire a clear 
physical understanding of the mechanisms involved in any local transfer process 
taking place in the bulk of a turbulent dispersed two-phase flow, it  is essential to 
determine both the magnitude and the behaviour of the Reynolds stress tensor and 
of the associated turbulent kinetic energy inside the continuous phase. Knowledge of 
such terms and their modelling is also essential if a numerical treatment of the local 
time-averaged equations of two-phase flows (Ishii 1975) is attempted, as for instance 
in the analysis of void migration (Drew & Lahey 1977, 1982) which may trigger a 
regime transition and affect the flow pattern. While there exists a huge number of 
papers dealing with wall stresses in pipes, there are comparatively few papers 
devoted to the determination of turbulent quantities in bubbly flows, at least when 
the mean diameter of the bubbles is of the order of magnitude of some turbulent 
lengthscale associated with the flow field of the liquid (Serizawa, Kataoka & 
Mishigoshi 1975; Sullivan et al. 1978; Theofanous & Sullivan 1982; Sato & Sekoguchi 
1975; Ohba, Kishimoto & Ogasawara 1977; Lance 1979, 1986; Lance & Bataille 
1983; Lance et al. 1980; Gherson & Lykoudis 1984; Wang 1985). Among these, the 
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pioneering work of Serizawa et al. and the recent contributions of Sullivan et al., 
Theofanous et al. and Wang deserve special attention because they are quite close in 
spirit to the present paper. The latter give valuable information concerning void 
ratio profiles and turbulent intensities in a pipe flow. Unfortunately, there is a need 
for more data to provide a complete description of the turbulent field in the liquid, 
besides the fact that such a geometry makes i t  difficult to interpret the experimental 
results, in view of the highly heterogeneous character of both the basic turbulent field 
and the void fraction profiles. Therefore, i t  appeared necessary to consider the 
problem in a much simpler situation, that of a uniform mean flow. Specifically, the 
scope of the present paper is restricted to the analysis of a uniform vertical co-current 
air-water bubbly flow, described in $3,  whose velocity and void fraction do not 
exceed respectively 1.2 m/s and 3%, both the diameter of the bubbles and Taylor 
lengthscale being of the order of 5 mm. 

However unrealistic such flows might seem from a practical point of view, their 
study is believed to be a first step towards the investigation of somewhat more 
complex situations, such as shear flows (Lance, Marie’ & Bataille 1985). With a view 
to determining the above-mentioned turbulent quantities of practical interest and to 
give an interpretation of the mechanisms associated with the interaction between a 
uniform grid-generated turbulent flow and a statistically homogeneous swarm of 
bubbles, the authors have tried to provide a detailed and complete description of the 
turbulence in the liquid phase. First, the physical meaning of turbulence in two- 
phase dispersed flows is investigated, and the corresponding turbulent kinetic energy 
balance is discussed ($2). The experimental facility, the hot-film and laser-Doppler 
measuring techniques as well as the operating conditions are described in $3. The 
influence of the void fraction and of the mean liquid velocity on the various standard 
local parameters characterizing turbulence are examined in 3 4, namely the turbulent 
intensity, the Reynolds stress tensor, as well as the autocorrelation and uni- 
dimensional spectrum of the longitudinal velocity fluctuation. The isotropy of the 
single-phase turbulent field proves to be almost unaltered when the bubbles are 
injected, except possibly in the immediate vicinity of the grid. Special attention is 
paid to the variation of the longitudinal turbulent intensity as a function of the void 
fraction, which shows the existence of two turbulent flow regimes. The transition 
from one to the other seems to be associated with the appearance of significant 
hydrodynamic interactions between the bubbles a t  a critical value of the void 
fraction. Also, it is shown that a t  low enough void fractions, the measured turbulent 
kinetic energy may be considered as approximately the sum of the turbulent energy 
in the liquid in the absence of bubbles and the ‘pseudo-turbulent’ contribution 
associated with the motion of a swarm of identical oblate spheroidal bubbles rising 
along helicoidal paths in an ideal fluid. The behaviour of the one-dimensional spectra 
is strongly modified, especially in the high-frequency range, which obeys a -f power 
law. A tentative explanation for this behaviour is proposed. Moreover, a careful 
inspection of the autocorrelation of the liquid velocity fluctuation suggests that  a 
Taylor-type hypothesis can be reasonably invoked in order to obtain information on 
the spatial structure of the flow. Finally, the longitudinal evolution of the excess 
turbulent kinetic energy created by the bubbles results from an equilibrium between 
the viscous dissipation and the production due to their presence, which allows an 
estimation of the unknown interfacial term in the turbulent energy equation. 
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2. Turbulence and pseudo-turbulence in dispersed flows 
Although the present study is devoted to bubbly flows, it is useful to discuss first 

the concept of turbulence in more general terms, for dispersed flows, i.e. gas or liquid 
flows carrying a large number of inclusions such as drops, bubbles, solid particles. A 
local and instantaneous description of such flows is generally impossible owing, 
among other things, to the tremendous number of initial and boundary conditions 
which have to be specified. It is therefore necessary to adopt a statistical description, 
the averaging operator being determined by the kind of problem to be treated: 
volume, area or segment average, time or ensemble average. The phase averages 
considered here (time or ensemble averages) have been well documented in the 
literature (Ishi 1975; Delhaye & Achard 1976; Bataille & Kestin 1981), and are given 

where A ,  stands for any quantity pertaining to phase k, and 2, is the characteristic 
function of phase k (x, = 1 in phase k , x k  = 0 otherwise). The corresponding 

a , = A , - A ,  . fluctuation is defined by -X 

The associated momentum conservation equations read (see Ishii 1975) 

-X d a  X 

dt at where & = - + q x - v ,  = - a , u , ~ ~ ,  , 
-X 

M, denotes the momentum exchange between the phases, rkT the averaged stress 
tensor and g the gravity vector. 

This description amounts to replacing the initial strongly heterogeneous two-phase 
flow by a mixture of two coexisting equivalent fluids, with averaged physical 
properties. Unfortunately, however, the averaged momentum equations contain, as 
expected, unknown terms which require closure laws such as the correlation of the 
velocity fluctuations u, and the interfacial momentum transfer Mk. Special 
attention will be paid here to the ‘Reynolds-type’ stress tensor. 

The averaging process nevertheless exhibits some shortcomings : the averaging 
operator smoothes out the fluctuations existing in the continuous phase in the 
absence of inclusions as well as the perturbations induced by the discrete phase. The 
physical content of the fluctuating quantity a, is therefore somewhat complex. In 
particular the velocity fluctuation in the continuous phase results from coupled 
mechanisms such as the turbulence of the liquid phase, originally generated by the 
grid, the random stirring of the continuous phase due to the motion of the inclusions, 
the vortex shedding in the wakes of the inclusions and the deformation of the 
interfaces (if any). 

Obviously, neither the second nor the last contributions concern turbulent 
fluctuations in the usual sense. Nevertheless, they play a part in the magnitude of the 
velocity correlations (or the Reynolds stress tensor). In order to distinguish between 
‘true turbulence’ and apparent turbulence, we shall call the random velocity field 
induced by the bubbles when no turbulent production occurs ‘ pseudo-turbulence ’. 

In order to interpret experimental results and to model the Reynolds stress tensor, 
it would be very useful to separate the different contributions to the velocity 
fluctuation, especially the part corresponding to the pseudo-turbulence. Some 
authors have proposed a decomposition of the instantaneous liquid velocity into 

-X 
u, 
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FIGURE 1 .  Comparison between the instantaneous liquid velocity without bubbles (heavy line) 
and with bubbles (thin line). Sampling frequency: 2.5 kHz. 

three components : a mean value ; a component due to the ' true ' turbulence, and a 
component describing the perturbations induced by the bubbles (Sato & Sekoguchi 
1975 ; Theofanous & Sullivan 1982). Though such a decomposition is very convenient, 
it has no experimental support. So far, classical filtering techniques are inoperative 
in view of the impossibility of defining a cut-off frequency isolating each effect. That 
this is indeed the case can be seen in figure 1, where a single-phase turbulent signal 
is compared to its two-phase equivalent. 

One could introduce two different averaging operators: the first would be an 
ensemble average over all the configurations of the cloud of inclusions, for a given 
realization of the basic single-phase turbulent field ; the second an ensemble average 
over all the realizations of the turbulent field, but for a given configuration of the 
cloud. Each operator allows a particular contribution to be isolated. Such a method, 
however, seems unrealistic, because it is impossible to control each random process 
separately: the motion of the inclusions is affected by the large-scale fluctuation of 
the turbulent field, and the turbulent eddies are distorted by the velocity gradients 
induced by the inclusions, a t  least when their mean diameter is of the order of the 
integral lengthscale of the single-phase turbulence. 

As a consequence, in what follows a simpler approach was taken, and only a rough 
measure of the interaction between turbulence and pseudo-turbulence was 
considered, i.e. the excess turbulent kinetic energy defined as the difference between 
the fluctuating kinetic energy in the continuous fluid and the turbulent kinetic 
energy KO measured in the liquid in the absence of inclusions. 

It proves very useful, however, to estimate a priori each contribution to the kinetic 
energy or to the Reynolds stress tensor from analytical or order-of-magnitude 
arguments, in the simple case of a swarm of identical bubbles of diameter D rising 
steadily in a quiescent liquid a t  a constant speed U,. 

2.1. Contribution due to the kinematics of the bubbles : pseudo-turbulence 
According to Batchelor (1972), the ensemble average of a quantity A ( x ,  t )  attached 
to the liquid phase is given by 
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where N is the number of bubbles, C ,  a point in the configuration space (zl.. . z,), 
and f ( c N )  the probability density function for the centres. If the flow is very 
dispersed, the interactions between bubbles can be neglected. If, in addition, the 
positions of the bubbles are completely random, the above expression reduces to 

where a is thexvoid fraction, and -Y the volume external to the bubbles. The 
correlation % can be easily calculated when the flow around the bubbles is given 
by a potential, which proves to be a reasonably good approximation in the absence 
of surfactants since the wakes are very thin (Moore 1963). Thus, for spherical, 
identical bubbles (van Wijngaarden 1982) 

where U, is the relative velocity of the bubbles with respect to the liquid. 
In our experiments, the bubbles experience helicoidal trajectories. The potential 

for oblate-spheroidal bubbles in spiralling motions is to be found in Lamb (1932) and 
Saffman (1956). Let 52, d ,  K ,  a, e denote respectively the angular velocity of the 
bubble, the radius of the spiral, the angle between the axis of symmetry of the bubble 
and the upward vertical, the longest semi-axis and the eccentricity of the bubble. 
The total kinetic energy T of the liquid is 

+ - sin2 K - 
2-a, VZ, 2-a, 

a d  
2T=aVR cosK+-sinK [( uR 

(6) 

where 
yo = 2(e+i)(1-carctanc),  a. = (e+1)carctan{-F7 c =  (i-e2)i/e. 

The longitudinal kinetic energy requires numerical integrations except when the 
angle K is small. In that case 

(7) 
-X 
u2 = au",f(c) +aa2d2g(f l )  +a52 dU, Kh(t;) + O ( K ~ ) ,  

with f(6) = g(arctan 6- [/( 1 + e))-2(arctan c/;/5+ 1/(e + 1) - 2 arctan2 5)' 
g ( c )  = c( 1 + e) (2 + e-c(1+ e) arctan c)-2((3e + 1) arctan 5-3c), 

h(S) = 2(f(C)-dS)). 

2.2. Contribution due to the wakes 
The previous estimation for the kinetic energy induced by the bubbles is only valid 
for inviscid flows. According to Moore's (1963) work, this result is still valid for very 
pure liquids when the Reynolds number based on the bubble diameter is high. The 
wakes prove to be very thin, and can be neglected in a fist approximation. Now, for 
tap water, the presence of surface contamination is unavoidable, and flow separation 
occurs on the bubble walls. For the range of bubble diameters considered in the 
present study ( -5  mm), the wakes are significant and apparently turbulent 
(Maxworthy 1967). Therefore, the cloud of bubbles rising in the liquid can be 
considered equivalent to a grid, generating small-scale turbulent fluctuations, as well 
as the pseudo-turbulent perturbations described above. The wake contribution to 
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the kinetic energy can be roughly estimated from the dissipation rate, which is a 
fraction of the work performed by the drag force experienced by the bubbles, i.e. 

where C, is the drag coefficient. If one assumes that the 
associated with this dissipation have a lengthscale I , ,  then 
satisfies : 

u:/lw - (a /D)  C, On,. 
Thus, the energy associated with the turbulence production by 
to  vary as a:. 

(8) 

velocity fluctuations 
their r.m.8. value uk 

(9) 

the wakes is expected 

3. Description of the experiment 
3.1. Experimental facility 

In  order to achieve the above-mentioned flow regime, a hydrodynamic tunnel (see 
figure 2)  described in detail in Lance (1979) has been built. I ts  test section is a 2 m 
long square channel (450 x 450 mm) and it is operated a t  atmospheric pressure and 
ambient temperature, a t  mean liquid velocities smaller than 1.2 m/s. The grid, 
located upstream and made of cylindrical rods, is equipped with an array of 260 
equally spaced strainless steel injectors, 0.8 mm inner diameter, through which air 
bubbles are blown uniformly into the tunnel (see figure 3). The void fraction thus 
obtained varies from 0 to 5 Oh according to  the injection pressure. The dimensions of 
the test section, of the grid mesh (4 cm) and the diameter of the rods (8 mm) have 
been selected so as to make it possible to obtain turbulent lengthscales of the same 
order of magnitude as the diameter of the air bubbles, to detect the smallest 
turbulent scales with the probes available a t  present, and to compare our results 
easily with the reference data given by Yeh & Van Atta (1973) for turbulent air flows. 

In  particular, the latter condition implies that  the lengthscale and the Reynolds 
number based on the grid mesh of the turbulent water flow (in the absence of air 
bubbles) under consideration should be the same as those of Yeh & Van Atta’s 
experiments for some typical mean velocity, which, here, has been chosen equal to 
0.3 m/s. It is this requirement that yields the values given above for the grid mesh 
and the diameter of the rods. The corresponding values of the physically relevant 
quantities are : integral lengthscale L,, = 2 cm ; Kolmogorov’s lengthscale 7 = 
0.53 mm; Reynolds number based on grid mesh Re, = UM/v = 10500; turbulent 
Reynolds number Au’/v = 35, where v ,  A, U ,  u‘ and M are respectively the kinematic 
viscosity, Taylor’s lengthscale, the mean velocity, the r.m.s. value of the longitudinal 
velocity fluctuation u and the grid mesh. 

I n  order to improve the isotropy of the turbulent field, a contraction section of 
ratio 1.27 is inserted between the grid and the beginning of the test-section (see 
Comte-Bellot & Corrsin 1966). 

3.2. Characterization of the basic single-phase JEow 

Let X ,  Y and 2 denote respectively the longitudinal and transversal coordinates 
(figure 2). The main characteristics of the flow field in the absence of bubbles, namely 
the mean velocity u and the turbulent intensity, were measured with the hot-film 
anemometer without and with the grid at various points and plotted versus 2 for 
X / M  = 26.4 (figure 4). The turbulent intensity is here defined as the ratio of the r.m.s. 
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Y 
FIGURE 2. General view of the facility : 1 ,  tank ; 2, test section ; 3, grid ; 

4, honeycomb ; 5, pump. 
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FIGURE 3. Air injection device. 

value ur of the longitudinal velocity fluctuation and the mean velocity. When the 
tunnel is operated without the grid, the mean velocity is constant to within 0.5Y0, 
outside comparatively small boundary layers ( < 5  cm). In  addition, the turbulent 
intensity, which is itself uniform in the same region, never exceeds 0.4 YO. Therefore, 
a large fraction of the volume available in the test section contains a uniform mean 
flow with negligible residual fluctuations. 

With the grid the mean velocity and the turbulent intensity again prove to be 
constant along the Y-direction, to within 0.5 and 2% respectively, outside the 
boundary layers. The behaviour of these quantities in the 2-direction, which has 
been investigated using a laser-Doppler anemometer, is essentially identical. 
Moreover, the determination by the same technique of the ratio of the r.m.s. values 



102 M .  Lance and J .  Bataille 

1 .( 

0. 

0. 

-0. 

B A  

A . 
. 

0 . 
m 

1 
A A ~ A ~  

A A A T A  

A A  

A 
A 

0 
0 

* 
-0.1 0 0. I 

(m) 

4 

3 

UI -(Yo) 
UC 

2 

1 

FIGURE 4. Distribution of the turbulent intensity (A), of the ratio of fluctuation u‘/vL(A), and the 
uv-component of the Reynolds stress tensor (0 )  in the 2-direction. X / M  = 26.4, U = 0.45 m/s, 
a = 0. 

of the longitudinal and transversal velocity fluctuations (u’/u’ = 0.98) and of the 
correlation coefficient between u and u (m/u’v’ = 0.04) indicate that the turbulence 
behind the grid is indeed isotropic (figure 4). Finally, the decay of turbulence is 
governed by the following asymptotic law, valid as long as X / M >  25 and 
Re, > 5 x  lo3: 

u’/U = &(X/M)-l.’s,‘ (10) 
which is similar to that obtained in Comte-Bellot & Corrsin (1966) and in Yeh & Van 
Atta (1973). 

3.3. Instrumentation and signal processing 
An AID 7401 optical probe, detecting the change in the optical index of the medium, 
was employed to determine the local void ratio: the data thus obtained are known 
to be reliable (Galaup 1975) and were considered as reference values. The uncertainty, 
estimated from the experimental scattering, is of the order of 5% for an averaging 
time of 100 s. 

The results concerning the fluctuating velocity components and other derived 
quantities were measured either by hot-film anemometry or by laser-Doppler 
anemometry . 

3.3.1. Hot-film anemometry in bubbly $ow 
The measuring system was composed of a Thermosystem 1230 W conical hot-film 

probe, of a DISA 55 D 01 anemometer, and a DISA 55 DD 25 signal conditioner. In  
order to avoid the formation of bubbles at the tip of the probe, the overheat ratio of 
the film was restricted to 0.05. The signal was fed into a HP 1000 computer unit for 
numerical treatment, with a sampling frequency of 2.5 kHz selected so as to be 
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consistent with the highest frequencies of the signal (around 1 kHz), and with the 
storage capacity of the computer. It is known that the signal delivered by a hot-film 
probe in bubbly flow is very spiky, owing to the abrupt change of heat transfer a t  the 
crossing of the interface (Bremhorst & Gilmore 1974; Delhaye 1969). It is therefore 
necessary to remove the peaks from the signal before calculating the turbulence 
intensity. The discrimination between phases - and therefore the determination of 
the characteristic function xL of the liquid phase -was achieved by inspection of the 
amplitude of the quantity (auL/at)*. Such a criterion has often been adopted in single- 
phase turbulent intermittency experiments, for which the signal exhibits the same 
discontinuous behaviour (Schon & Charnay 1975 ; Resch 1974). The main advantage 
of this method is to amplify drastically the peaks on the probe due to the passage of 
the bubbles. A threshold value was chosen, above which the characteristic function 
xL was set equal to zero. This value was fitted so that the mean value of xL was equal 
to the local void fraction measured by the optical probe. Once the characteristic 
function xL is known, it is a straightforward matter to calculate the conditional 
averages of the required quantity. The mean velocity range and the integral 
lengthscale impose an averaging time of 200 s, in order to minimize the error due to 
finite time average (1 YO on the turbulence intensity). However, the main source of 
uncertainty is due to the conditional sampling technique, for two reasons. First, the 
small-amplitude peaks due to incomplete piercing or to bubble sliding on the probe 
are difficult to detect by the present processing. Nevertheless, as the void fraction is 
low (<3%) ,  these events are rare, and their contribution to the r.m.s. value of the 
velocity is expected to be negligible. Secondly, the void fraction measured with the 
conical hot film is underestimated, owing to the deformation and the deflection of 
bubbles by the probe, as mentioned by Wang et al. (1984). Therefore, the conditional 
sampling used here probably removes a small part of the velocity field around the 
bubbles, which contributes to the pseudo-turbulence. An upper bound for the 
relative error on the kinetic energy is S u v Z R / ~ x ,  where 8u is the absolute error on the 
void fraction. A reasonable estimation for this error, based on the inspection of data 
scattering and comparison with laser-Doppler anemometry is 10 %. 

3.3.2. Laser-Doppler anernometry 
In recent years, several attempts have been made at extending the use of laser- 

Doppler anemometry (LDA) to bubbly flows (Ohba et al. 1977; Theofanous & 
Sullivan 1982). In the case of very large test sections, however, a number of 
additional difficulties occur, mainly due to the interruption of the beams outside the 
measuring volume. The forward diffusion technique employed here was developed by 
Marie (1980, 1983) who showed that satisfactory measurements of the instantaneous 
velocity components could be made for void fractions of less than 7 YO, provided that 
the signal was adequately processed by rejecting the noise due to the reflection of 
light on the bubbles. The optical set-up was composed of a 2.5 W Argon laser, a 
DISA 55 X 08 photomultiplier, a DISA 55 L 90 counter and a Bragg cell. Here, the 
LDA technique was essentially used to obtain the off-diagonal terms of the stress 
tensor by measuring the components of the velocity along two directions making 
& 4 5 O  angles with the vertical axis. 

3.4. Spectral analysis 

Just like in single-phase turbulent flows, spectral analysis is expected to provide 
valuable information on the flow structure. Nevertheless the discontinuous character 
of the velocity signal delivered by hot-film anemometry makes it difficult to interpret 
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FIQURE 5. Influence of a Laplace-Gauss weighting window on the one-dimen*o_nal spectrum 
E, l .  (a) a = 0 ; ( b )  a = 1.9 % with window ; (c) a = 1.9 YO without window ; U,  = 0.4 m/s. 

one-dimensional spectra. Though no definitive method has been adopted for two- 
phase flows, various attempts can be found in the literature : suppression of the peaks 
and patching together physically meaningful segments of the signal (Lance 1979 ; 
Gherson & Lykoudis 1984), linear interpolation of the velocity inside the peaks (Tsuji 
& Moriaka 1982), conditional sampling by the characteristic function of the liquid 
(Resch & Abel 1975; Lance 1979; Lee 1982). When the void fraction is small no 
significant difference between these techniques is observed. The last one seems 
preferable since it corresponds to  the phase averaging defined above. However, the 
characteristic function xL is a sequence of rectangular windows which induce 
unphysical high frequencies for high void fraction. In  order to avoid this effect, we 
choose to adopt a processing based on the use of weighting windows. The method 
consists in replacing the discontinuous function xL(x, t) by a sequence of smooth 
windows nL(x,t). The choice of mL is subject to the following requirements: to 
minimize the deformation of the signal, which is in practice achieved when the mean 
value of nL is nearly equal to xL = 1-01, and to introduce as few high frequencies as 
possible. This last condition is satisfied by well-known functions : Hanning, Haming, 
Laplace-Gauss, etc. which approximate a rectangular window while remaining of 
class C". 

In  the present work, a Laplace-Gauss function was adopted. The weighted time 
correlation and one-dimensional spectrum of the fluctuating velocity are defined 

and 

The effect of the weighting window has been tested on a single frequency 
superposed to the characteristic function xL. It is checked that  the peak broadening 
observed for the rectangular window is significantly reduced with the L a p l a c 4 a u s s  
windows (figure 5 ) .  The comparison between the power spectra of xL and nL (figure 6) 
shows that the latter decreases much faster than the former, the effect on the 
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FIGURE 6. Power spectra of the characteristic function of the liquid phase: (a) xL; (b) nt. 

turbulence spectrum being depicted in figure 15. Owing to the low void fractions 
adopted in our experiments, more than 97% of the signal is representative of the 
liquid phase. Therefore, the distortion of the low-frequency range of the spectra is 
expected to be negligible. 

4. Experimental results and discussion 
4.1. Controlling parameters 

It is anticipated and confirmed experimentally that sufficiently far downstream of 
the grid, the flow is statistically stationary and homogeneous in any horizontal plane. 
Therefore the behaviour of the various moments of the velocity fluctuation in the 
liquid phase will be governed by the.following parameters : the mean velocity of the 
liquid UL , the mean velocity of the gas U,  , the void fraction a, the mean diameter 
of the bubbles D, the location X of the measuring point (measured from the grid), the 
grid mesh M ,  the gravitational acceleration 9,  the interfacial tension c, the mass 
densities pL and pG of the liquid and the gas, and their viscosities p L  and pG. Simple 
physical considerations suggest that the a2propriate length, time and mass scales are 
U,, M and pLW, where U ,  = U,  -UL is the drift velocity. Moreover, it proves 
convenient to introduce an excess longitudinal turbulent kinetic energy defined by 

-X -X 

-x - 

u;(x) = U E ( X )  - UhZ(X), (13) 

which may be considered as a measure of the interaction between the swarm of 
bubbles and the original turbulent single-phase flow. 

For a given grid geometry, the latter quantity may be expressed as follows in 
terms of non-dimensional groupings : 

where 

P L  P L  

-X 

We, - , - , -  , 

Re, = P L U L  M 
P L  
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FIQURE 7. Transverse profiles of the void fraction a; cx = 1 m/s, X/M = 36.4. 

is the Reynolds number based on the grid mesh, while 

denote respectively the Reynolds, Froude and Weber numbers associated with the 
relative mean velocity of the bubbles. 

All the experiments reported here were performed with the same grid and the same 
gas-liquid couple. Therefore pc/pL, pc/pL were constant. In  view of the preceding 
remarks, the normalized excess turbulent kinetic energy uz/VR becomes a function 
of three independent variables only, namely: XIM, Re,, 01 or of (X/M, u;/UR, a), in 
terms of which most of the experimental results will be discussed. Their ranges of 
variation were respectively : 

21.4GXIMG46.5; OGuk/U,G 10%; O < a < 3 % .  (17) 

Within the range of void fractions and mean liquid velocities investigated in the 
present work, the bubbles produced by the injection device proved to be 
approximately oblate spheroidal, with a mean equivalent diameter equal to 5 mm, 
which is of the order of magnitude of the Taylor lengthscale of the turbulence in the 
basic single-phase flow. The size dispersion around this value, as measured 
photographically, was weak and did not exceed 1 mm. The ratio of major and minor 
axes of the bubbles ranged from 1.8 to 2.2, and their roughly helicoidal trajectories 
were characterized by the spiral diameter (1.5 < d / D  < 2), the rotation rate around 
the axis of the helix (20 < SZ < 40 radls), and the angle of the spiral (0.2 < K < 
0.3 rad). The above values are consistent with the experimental observations made 
by Saffman (1956) and Mercier, Lyrio & Forshund (1973). 

The mean rise velocity was determined from the transit time of a bubble between 
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two film probes, 3 mm apart, and was equal to 0.24+0.01 m/s. The latter value 
corresponds to a mean drag coefficient of 1.2. 

It is worth mentioning here that, owing to the large volume of the experiment, the 
water was only filtered and demineralized and that surface contamination could not 
be completely prevented. 

Finally, up till now, compressibility effects in the gas phase have been implicitly 
neglected. In fact, owing to the longitudinal pressure gradient associated with 
gravity, the mean diameter of the bubbles increases by 9 YO over the whole length of 
the test section (2 m). But, here, this variation does not exceed 3% since the two 
extreme stations considered were XJM = 21.4 and X / M  = 46.5. 

4.2. Homogeneity and isotropy of the $ow 
With the air bubbles, it is observed that except near the walls the local void fraction 
(figure 7),  the mean velocity and turbulent intensity profiles (u;/U, ) in a given 
section of the tunnel are flat to a good approximation - of the order of 10% - as 
expected for a homogeneous flow. 

According to figure 8, the r.m.8. value of the transverse velocity fluctuation v; is 
practically equal to ui, and the off-diagonal components of the Reynolds stress 
tensor, such as uL1)L , are negligible. This property holds over the whole range of 
control parameters investigated. Therefore, the isotropy of the initial turbulent field 
is unaltered by the injection of bubbles as suggested by Theofanous & Sullivan (1982) 
and postulated by Drew & Lahey (1977). As a consequence only longitudinal velocity 
fluctuations will be considered in what follows. 

-X 

X 

4.3. Behaviour of the longitudinal kinetic energy 

4.3.1. Bubble-induced $fluctuations in the absence of grid-generated turbulence 
In a first experiment, the air bubbles were blown through the grid for zero mean 

liquid velocity. The longitudinal kinetic energy was measured using the LDA 
technique briefly described above, for different void fractions (figure 9). Despite the 

FIGURE 8. Evolution of the Reynolds-stress-tensor componentsciunction of the void fraction 
a for different values of the mean liquid velocity. Filled symbols, uLvL /ui vt ; open symbols, ui/vi: 
0,  4, cx = 0.5 m/s; V, v, cx = 0.8 m/s; 0,  H, cx = 0.9 m/s; 0 ,  cx = 1.2 m/s. 
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FIGURE 9. Streamwise turbulent energy for zero mean liquid velocity versus void fraction. 
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FIQURE 10. Streamwise turbulent intensity versus the mean liquid velocity for different 
values of the local void fraction : X / M  = 36.4. 

experimental scattering due to the existence of recirculating motion induced by the 
bubbles, the variation of the longitudinal kinetic energy with a exhibits a linear 
behaviour. Moreover, the superposition of the inviscid pseudo-turbulent con- 
tributions obtained from equation (7) and the experimental values of the parameters 
describing the spiralling motion of the bubbles show a reasonable agreement with the 
data. This result suggests that the turbulent fluctuations produced by the wakes of 
the bubbles contribute only a small part of the overall fluctuating kinetic energy. 
This statement is supported by a study of the turbulent spectra, presented in $4.4, 
which indicates that the high-frequency range associated with the eddies generated 
in the wakes represents a t  most 20% of the kinetic energy. Therefore, the at 
dependence expected from equation (9) is not observed here. 
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FIGURE 11. Evolution of the turbulent iegnsity of the liquid with the distance from 
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FIGURE 12. Streamwise turbulent intensity versus void fraction a: .X/M = 36.4. 

4.3.2. Interaction between the swarm of bubbles and the grid-generated turbulence 
In order to comply with the classical presentation of sin le phase turbulence, the 

turbulent intensity uL/U, has first been plotted versus U, , X/M and a in figures 10, 
11 and 12. At a given representative station X, its behaviour exhibits a strong 
increase with the void fraction a, depending on the value of the mean liquid velocity, 
while its axial variation appars  to be very similar to that of the grid-generated 
single-phase turbulence uh/U,. 

An equivalent but more appropriate representation in terms of the non- 
dimensional parameters defined in $4.1 is provided in figures 13 and 14. For any 

--X -2 - 
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FIQURE 13. Evolution of the excess relative kinetic energy with void fraction for various 
values of the fluctuation generated by the grid. 

given value of a and uh/UR, the normalized excess turbulent intensity uk/UR is seen 
to fluctuate, whatever X, around a constant value with an amplitude which is of the 
order of magnitude of experimental errors (10 %), indicating that to a reasonable 
approximation, uk/UR is a function of a and u;/UR only. It is therefore convenient 
to consider the plane of ‘operative’ points whose rectangular coordinates a and 
uh/U, account for two competitive mechanisms, the influence of the bubbles (a)  and 
that of the basic grid-generated turbulence (uh/UR). The domain of this plane, which 
has been experimentally investigated, reduces in fact to the region OABC shown in 
figure 14. The part A B  of its boundary is obvious and imposed by the upper limit of 
the velocity of the liquid, while OCA indicates that a t  a given value of uh/UR it  
proved impossible to obtain reliable data for arbitrarily high values of a, owing to the 
appearance of recirculation flows which destroyed the homogeneity of the motion. 
The non-dimensional excess turbulent kinetic energy ug/ VR first varies linearly with 
a, whatever the value of the grid-generated turbulent intensity, before undergoing a 
slope change which depends strongly on ui /UR (figure 13). This suggests the existence 
of two distinct regimes separated by a transitional region which can be conveniently 
characterized by a critical value of the void fraction a,, defined in figure 10. Such a 
behaviour is best visualized in the plane of operation points (a,uh/UR) where the 
critical curve a, = a,(uh/UR) has been drawn (figure 14). For highly dispersed flows 
(a < aJ, the observed linear behaviour of the excess turbulent kinetic energy is 
identical to that observed in the absence of the grid-generated turbulence and 
presented in figure 9. The good agreement (see straight lines A and B) between the 
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FIGURE 14. Plane of operating points (a, u;/U,). 

experimental curves and the potential flow model indicates that the kinetic energy 
in the liquid is a mere superposition of the turbulent energy created by the grid and 
that generated by the bubbles. Such a decomposition cannot of course be rigorously 
true since the large-scale fluctuations of the liquid velocity affect the motion of the 
bubbles. Nevertheless, the helicoidal model adopted here is a reasonable approxi- 
mation of the actual trajectories. The contribution of the wakes to the turbulent 
kinetic energy remains small compared to the irrotational pseudo-turbulence for the 
range of bubble diameters considered here, as it was pointed out in $4.3.1. 
Nevertheless, the small eddies produced in the wakes of the bubbles have a strong 
influence on the turbulence spectra, as will be shown later. 

When the void fraction increases, the mean distance between the bubbles 
decreases and hydrodynamic interactions begin to occur. The critical value a, at 
which such interactions become significant can be estimated from the results 
obtained by Tsuji, Morikawa & Terashima (1982) for solid spheres at  high Reynolds 
number. These authors have shown that interaction may appear when the transverse 
separation A between the centres of two identical solid spheres is of the order of 5 
diameters. If the swarm of bubbles is considered as a random lattice of mean mesh 
A ,  the corresponding void fraction a., is approximately a, x (D/A)3  x which 
agrees with the experimental value. On the other hand, the effect of the basic grid- 
generated turbulence (or equivalently of the mean liquid velocity) can be explained 
by the following argument : owing to the large-scale velocity fluctuations in the liquid 
resulting from the grid turbulence, the bubbles experience large trajectory 
fluctuations which increase the probability of mutual hydrodynamic interactions 
and therefore the excess turbulent kinetic energy. 
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FIQURE 15. Influence of the void frazign on the one-dimensional spectrum of the velocity 
fluctuation in the liquid. X f M  = 36.4. U ,  = 0.9 m/s: curve 1 ,  a = 0;  2, a = 1%; 3, a = 2.5%; 
4, a = 4%. 

4.4. One-dimensional spectra and autocorrelations 
The power spectrum of the characteristic function xL of the liquid phase has already 
been shown on figure 6. The shape of the spectrum is very similar to that observed 
for the turbulent-non-turbulent interface in a boundary layer by Corrsin & Kistler 
(1953), who showed that such behaviour is typical of a Poisson statistical distribution 
for the appearance of discontinuities. In the present case, the Poisson law cannot be 
rigorously valid since the discontinuities - associated with the piercing of the bubbles 
by the probe - of the signal are not all independent. 

Figures 15 and 16 display the one-dimensional spectra and the autocorrelations 
measured at the location X/M = 36.4, for various values of the void fraction and a 
given value of uhlU,. Compared to the single-phase flow, it is seen that the turbulent 
kinetic energy of the liquid is distributed over a significantly wider range of 
wavenumbers. Accordingly, the associated Taylor and Kolmogorov scales are much 
smaller than the corresponding single-phase lengthscales (figure 17).  The one- 
dimensional spectra and the autocorrelation curves exhibit two different behaviours, 
according to the domain explored in the plane of operative points (figure 14). In fact, 
the shape of El ,  and R,, is quite independent of the void fraction in region (C) ,  while 
the transition from the single phase proves to be more progressive in region (T).  This 
suggests a competition between two mechanisms, region (C) being dominated by the 
pseudo-turbulence, of energy auk, and region (T )  by the grid-generated turbulence, 
where kinetic energy is uhz. The boundary between these domains is given by the 
condition uhz z up,, which determines a parabolic curve in the plane (a,  u;/U,). 

In region (T) ,  the classical - %  power law describing the behaviour of the spectra 
in the high-wavenumber range is progressively replaced by another power law of 
exponent equal to -$, when the void fraction increases for a given value of u;/U,. 
Such a feature is also seen for R,,, which evolves smoothly between the curves 
obtained for the single-phase flow and that observed in region (C). 

In the latter, the autocorrelations of the velocity fluctuation show a remarkable 
collapse of the curves obtained for different values of a and uhIUR, when plotted 
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FIGURE 16. Autocorrelation of the velocity fluctuation in the liquid: 0 ,  a = 0, qx = 0.3 m/s; *, 
a = 0 ,  U, =0.78m/s;  0,  a =0.8%, q x = 0 . 3 m / s ;  0,  a = 0 . 7 % ,  c x = 0 . 7 8 m / s ;  V, a =  
1.75%, qx = 0.3 m/s; 0, a = 1.15%, qx = 0.78 m/s; V, a = 1.96%, Ex = 0.3 m/s; D, a = 
2.32%, qx = 0.78 m/s; A, a = 0, cx = 0.91 m/s ; j t ,  a = 0.7%, qx = 0.91 m/s; A,  a = 2.42%, 
- .--k U,” = 0.91 m/s; *, a = 1.25%. U, = 0.91 m/s. 
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FIGURE 17. Evolution of the Taylor lengthscale A and of the Kolmogorov lengthscale 7 aa functions 
of the void fraction a. X/M = 36.4: 0,  Ex = 0.6 m/s; e, cx = 0.7 m/s; 0,  Fx = 0.9 m/s. 

versus the non-dimensional parameter r /D  = U, 710. Moreover, the autocorrelation 
does not depend on the liquid velocity, which supports the validity of a Taylor 
hypothesis. The integral scale L,, is a constant in that domain, with L,, = 0.80. 
These features bring out the existence of a well-defined structure of the flow, 
dominated by the motion of the bubbles. 

-X 
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It seems natural to associate the increase of the range of high frequencies of the 
spectrum with the wakes of the bubbles, which create small eddies, with a lengthscale 
smaller than that of the turbulent structures generated by the grid. The existence of 
a -!j power law in region (G) is however more difficult to explain. The rotational part 
of the turbulent field appears as a complex mixture of structures generated by the 
grid and of turbulent eddies produced in the bubbles' wakes. The former are created 
only a t  the inlet of the test section, while the latter are produced continuously. Owing 
to the viscous dissipation, the small-scale structures of the grid turbulence are very 
quickly dominated by that generated by the wakes. At high wavenumbers k, the 
spectral energy balance can be written as 

(18) 
a 
at 
-E+2vk2E = T ( k , t ) + n ( k , t ) ,  

where E is the three-dimensional turbulent spectrum, T the energy transfer, and 17 
the production term associated with the wakes. If the production spectrum 17 is 
assumed to be local in the spectral space, dimensional analysis allows its functional 
dependence on the wavenumber to be specified. In  fact, l7 is a function of k and of 
the energy dissipation rate in the wakes, 6,. This leads to the estimate l7 x Flew.  
Now, in a stationary situation, the balance equation (18) expresses a competition 
between three mechanisms : viscous dissipation ; spectral energy transfer ; and 
external production, the characteristic times being respectively rD x view-$, rT x 
A/&, rp w DIU,. These time constants can be shown, from experimental data, to 
satisfy roughly the following inequalities : 

T D  6 r p  4 7.p (19) 

The eddies produced in the wakes are thus dissipated by viscosity, before spectral 
transfer takes place. Consequently, the spectral energy balance reduces to 2vk2E x 
k1eW which leads to E w k-3 in the high-wavenumber range. However crude such an 
estimation may appear, it  is nevertheless very close to the experimental value -#. 
That the - %  law does not hold (except for high grid-turbulence level) is by no means 
surprising : indeed it seems unlikely to expect an equilibrium inertial range when the 
small-scale structures are continuously maintained by the bubbles. However, 
spectral transfer in the intermediate range is probably enhanced, the wake eddies 
acting as a turbulent viscosity for the large-scale structure. 

At low wavenumbers, the turbulent spectrum is affected by the pseudo-turbulent 
fluctuations, which are dominant when uh/U, is low and is therefore expected to be 
a function of the wavenumber and the kinetic energy transferred to the liquid by the 
bubbles, i.e. Ell = Ell (k ,  u, u",). Dimensional analysis imposes once more Ell - 
k-'uv,. This power law is indeed observed when a is high enough. When the energy 
uh2 created by the grid becomes comparable with up,, the behaviour of the spectrum 
proves to be more complex, the exponent lying between -a and -1. 

4.5. Decay of the kinetic energy and the interfacial production term of the 
jluctuating energy 

It was observed above that the excess turbulent kinetic energy does not decay along 
the test section. This behaviour is consistent with the splitting of the kinetic energy 
into two contributions, arising from the grid and from the bubbles. In  fact, the 
pseudo-turbulence and the wakes are continuously maintained by the motions of the 
bubbles. On the other hand, the eddies generated by the grid experience viscous 
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FIGURE 18. Evolution of the excess dissipation rate eE = E - E , ,  non-dimensionalized by the 

power of the drag force (measured from the spectra): U,, = 1 m/s. 

decay. From the energy balance equation, i t  is easily shown, using conditional 
averaging techniques, that the turbulence kinetic energy in the liquid K satisfies the 
equation 

dK 
- = --s+P, dt 

where e is the dissipation rate in the liquid, and P an interfacial production term 
which need not be made explicit here. Now, the dissipation rate can be split into two 
parts: eo which is associated with the eddies generated by the grid, and an excess 
dissipation rate, eE due to the bubbles. In view of the above result, the latter exactly 
counterbalances the production rate P. This property enables us to determine this 
interfacial production from the measurement of the dissipation rate in the liquid, 
which can be determined from the one-dimensional spectra of the velocity 
fluctuation. 

The interpretation of the high-frequency range of the spectra proposed above 
suggests that the production P be scaled by the dissipation rate in the wakes of the 
bubbles, which is of the same order of magnitude as the rate of work of the drag force 
experienced by the bubbles, i.e. P - $(C,/D) UsR, provided that acceleration effects 
due to bubble entrainment by the large eddies is small. Figure 18 shows that this 
estimation is consistent with the measurements. 

5. Conclusions 
The experimental work described here made it possible to bring out some of the 

striking features of the turbulence in the liquid phase of a uniform bubbly flow at low 
void fractions. First, the isotropy of the turbulent field is not altered by the injection 
of air bubbles. Moreover, within experimental errors, there exists a critical value a, 
of the void fraction - of the order of 1 % - below which the turbulent kinetic energy 
of the liquid may be reasonably considered to be just the sum of the kinetic energy 
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generated by the grid and that of the ‘pseudo-turbulence ’ associated with the motion 
of a cloud of non-interactive bubbles. The latter contribution is correctly estimated 
using a potential flow model. Above the critical value a,, the turbulence is strongly 
amplified owing to the hydrodynamic interactions between the bubbles, more so as 
the basic grid-generated turbulence increases. Finally, when the pseudo-turbulence 
dominates the grid-generated turbulence, the turbulent field exhibits a specific 
structure, characterized by typical power laws for the one-dimensional spectra ( - 1 
at low frequencies and - Q  a t  high frequencies). 

It is believed that the study of homogeneous situations can be of great help for the 
modelling of two-phase flow turbulence, as is the case in single-phase flow. The next 
step towards increasing the complexity of the study consists in the superposition a 
constant velocity gradient on the above configuration, in order to obtain a shear flow 
or a pure plane strain. Both geometries have recently been investigated and the 
results reported elsewhere (Lance et al. 1985, 1990). 

The authors gratefully acknowledge the financial support of CNRS under grant 
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work. 
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